Haozhe Chen

haozhe3@illinois.edu | +1-217-991-2337 | linkedin.com/in/hzchenhaozhe

EDUCATIONAL BACKGROUND

University of Illinois at Urbana-Champaign, ECE Department

Master of Science in Computer Engineering, GPA: 3.89/4.0

Urbana-Champaign, IL 08/2023-Current

University of Illinois at Urbana-Champaign, ECE Department

Urbana-Champaign, IL

Dual Bachelor of Science in Computer Engineering (with High Honors), GPA: 3.92/4.0

Teaching Assistant: ECE 220 Computer Systems & Programming

Zhejiang University, ZJU-UIUC Institute

Haining, China

Dual Bachelor of Engineering in Electronic and Computer Engineering, GPA: 3.93/4.0

2022

2022

Programming Languages: Python, Java, C/C++, SQL, HTML, JavaScript, CSS, Verilog, Matlab

Frameworks & Tools: Pytorch, ROS, IsaacSim, SAPIEN, Pymunk, Blender, SolidWorks, Creo, FreeRTOS, Vue.js

Relevant Coursework: Computer Vision, Machine Learning, Robotics // Random Process, Parallel Programming, Data Structures, Algorithms // Operating Systems, Architecture, Database, Distributed System, Networks, GUI Design

PUBLICATIONS

RoboVerse, UIUC, Submitted to RSS 2025

Urbana-Champaign, IL

Researcher & Developer, Lab of Prof. Pieter Abbeel

11/2024-01/2025

- Designed and developed a unified simulation framework for cross-simulator training and evaluation
- Implemented assets converter, object/robot loading, control, and state reading interfaces for MuJoCo and IsaacLab
- Achieved ~1000x acceleration in training by seamlessly transitioning from single-env to parallel-env simulator
- Led reinforcement learning framework development, migrating HumanoidBench assets, tasks, and algorithms to MetaSim
- Implemented cross-simulator training and validation for enhanced generalization and robustness

Dynamics-Guided Diffusion Policy, UIUC, ICRA 2025 (First Author)

Urbana-Champaign, IL

Researcher & Developer, Lab of Prof. Yunzhu Li

04/2024-09/2024

- Realized few-shot training for diffusion policy by augmenting training demonstrations with a dynamics model
- Cut human demonstrations from 200 to 5 while keeping a success rate over 95% in tasks like InsertT and HangMug
- Established a simulation environment in Pymunk and trained the diffusion policy on keypoint-based data
- Trained dynamics models and developed an interactive visualization tool for verification
- Applied Model Predictive Path Integral (MPPI) to generate additional training demos from human few-shot demonstrations
- Built a UDP-based ROS-like multi-processing framework for real-world robot control and a multi-camera system with the Iterative Closest Point (ICP) and FoundationPose algorithm for perception

RESEARCH EXPERIENCES

General Navigation of Mobile Manipulation Robot

Urbana-Champaign, IL

Researcher & Developer, Lab of Prof. Shenlong Wang

11/2024-current

- Built a real-world mobile manipulation robot with base, xArm, depth camera, and LiDAR, controlled with ROS
- Developed a full-featured digital twin in IsaacSim, integrating high-fidelity Scene converted from Unreal Engine 5 assets
- Enabled real-time monocular 3DGS SLAM with Mast3r and Depth Anything, alongside 2D LiDAR-based SLAM
- Explored vision-language-based navigation, incorporating scene graphs and frontier-based exploration

Course Project of ECE598JK Introduction to Humanoid Robotics, supervised by Prof. Joohyung Kim

BiDex: Generalizable Bimanual Dexterous Manipulation

Urbana-Champaign, IL

Applied reinforcement learning on the humanoid robot Atlas with dexterous Allegro hands in SAPIEN to learn bimanual decision-making policies for cooperation tasks, such as opening a laptop, lifting a pot, and tilting a bucket

- Mitigated occlusion with proprioception and extracted semantic information with PointNet-based segmentation module
- Designed rewards for multiple phases in each task and trained Proximal Policy Optimization (PPO) to complete the tasks

Unsupervised Anomaly Detection on Image, ZJU-UIUC Institute

Haining, China

02/2024-05/2024

Research Assistant, Lab of Prof. Zuozhu Liu

09/2022-06/2023

- Designed and trained a normalization flow-based anomaly detection model for image of industrial metal parts and enhance the detection performance on small-size defects by introducing clustering in graph theory
- Achieved 89% success in detecting small-area anomalies, up from 20%, surpassing SOTA models
- Surveyed on and realized detection, classification, and localization of anomaly with supervised and unsupervised methods

The RoboMaster Club, ZJU-UIUC Institute

Haining, China

Researcher & Developer & Leader of Visual Department

09/2020-01/2021

Developed and applied both traditional computer vision methods (PnP, Laplace operator, NMS, IOU) and a Faster R-CNN model to enable robot visual recognition of enemy units and vulnerabilities in camera footage